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Abstract—A generalized analysis to describe the overall process of gas-particle heat transfer in shallow

fluidized bed heat exchangers has been developed. The analysis which takes into account internal particle

resistance to heat transfer as well as a residence time distribution and a size distribution of particles

may be used for design of new exchangers or for evaluating the performance of existing exchangers.

Simpler analyses for certain important special cases were derived from the general analysis by application
of the appropriate simplifying assumptions.

NOMENCLATURE

A, particle surface area per unit base area of
bed;

A, As,  particle surface area and bed wall area in
element n;

B, breadth of bed;

C,.C;,  specific heats of gas and particles;

E(6)d8, fraction of particles having reduced bed
residence time between 8 and 64-d4;

G(p)dp, fraction of particles having size between p
and p+dp;

h, gas particle heat-transfer coefficient;

L, length of bed;

M, M., mass flow rates of gas and particles
through bed;

N, number of elements in analysis;

Q. rate of heat transfer in element n;

r R, radius within particle and outside radius
of particle;

tambs ambient temperature;

ta,, ts,_,» Mean particle temperatures after

residence times 8, and 8, in elements
n and n— 1 respectively;
th, mean bed temperature in element n;
tgins tyns Lao,s £AS temperature entering element n, at
some level in element n and leaving
element n;
ta{r), tn— 1(4), temperature distributions within
particles after residence times 8, and 8,
in elements n and n—1 respectively;
particle surface temperature in element n;
particle temperature entering bed, at
some position along bed and leaving bed;

fo,s

Esis Lss Lsos

tooms mean particle temperature leaving bed;

teods particle temperature leaving bed with
residence time 0;

Lsonps temperature of particles of size p leaving
bed with residence time 8;

teoews mean.particle temperature leaving bed
when operating under thermal
equilibrium conditions;

u, superficial gas velocity in bed;

Uy, superficial gas velocity in element n;
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U, overall heat-transfer coefficient for heat
losses;

W,, Wr, mass of particles in element » and in the
bed as a whole;

Z,Zr, depthin bed and total depth of bed.

Greek symbols

o, thermal diffusivity of particles;

a, reduced particle bed residence time;

8,,6r, residence time of particles in element n
and in bed as a whole;

A, radius within particle, referred to element
n-—1;

o, gas density.

1. INTRODUCTION

THE METHOD of cooling or heating particulate solids
in a shallow rectangular section fluidized bed is a
standard industrial technique. Its use for instance has
been reported for the process heating of granular coke
[1] and for cooling granular fertilizers {2, 3], sulphur
4] and powdered milk [5]. Practical aspects of design
and operation of such units have been discussed by
Wormald and Burnell [6].

Inspite of the wide use of the technique, heat-transfer
analyses have only been developed for operation under
special conditions. Thus an analysis for heat transfer in
a single stage device under conditions of thermal equi-
librium between particles and gas at the top of the bed,
and with plug flow of particles through the bed was
developed by Kazakova [3]. This was extended by
Gelperin and Ainshtein [7] to include the possible
invalidity of the thermal equilibrium assumption, by
introducing the gas—particle heat-transfer coefficient
into the analysis. Borodulya [8] introduced the concept
of a particle mixing coefficient but only defined it for
the extreme cases of plug flow and perfect mixing. In
their analysis Kunii and Levenspiel [9] suggested that
the bed be split up into a number of perfect mixers in
series with the exit gas temperature being equal to the
particle temperature within each mixer. A more general
technique for dealing with a particle residence time
distribution was proposed and verified by McGaw [10,
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1] but his analysis did not include the possibility of
particle internal resistance to heat transfer. In the only
attempt to allow for particle internal resistance effects
Ryazantsev [ 1]simply applied a correction factor to the
inlet particle temperature in Borodulya’s [8] analysis.
Analyses based on a bed effective thermal conductivity
concept have been made [5, 12] but these suffer from
the deficiency that internal and external effects are not
separated.

In this paper, a general analysis for heat transfer in a
shallow crossflow fluidized bed is presented. The
analysis takes into account: (a} particle internal
resistance to heat transfer; (b) a residence time distribu-
tion of particles through the bed; (c) a distribution of
particle sizes; (d) uneven inlet air velocity and tempera-
ture distributions. The analysis separates internal and
external effects by using the particle thermal conduc-
tivity and the particle to gas heat-transfer coefficient.
Simpler analyses for the important special cases in-
volving the appropriate simplifying assumptions are
derived from the general analysis.

2. BASIS OF ANALYSIS

In the development of the general analysis for heat
transfer in a shallow crossflow fluidized bed, a numerical
method involving internal particle resistance to heat
transfer is first developed for the special case of plug
flow of uniform sized particles through the bed.

In this initial analysis the full length of bed is divided
into a series of elements of equal length in the
longitudinal direction. Numerical heat balances are
carried out in each element in turn, starting from the
particle inlet end and finishing at the particle outlet end
of the bed. The width of each element is the width of the
bed and the length of each element is determined from
the total length of bed divided by the total number of
elements. The particles remain in a given element for a
particular length of time, §,, which is obtained from the
following relationship

W.

On = WT BT (I)
where W, is the mass of particles in element n, Wy is
the total mass of particles in the bed and 07 is the
particle residence time in the bed.

The basic assumptions inherent in the heat balances
are as follows: (i) No lateral mixing of gas in the bed.
{ii) Perfect mixing of particles in vertical plane.

The heat balance on each element assumes a know-
ledge of the internal particle temperature distribution,
as well as the weight of particles in the element and the
gas flow rate. The heat balance calculation is based on
the premise that, as soon as the particles enter the
element, the particle surface attains a temperature
which remains constant for the time the particles are
present in the element. The residence time of the
particles within each element depends on the number of
elements chosen and the particle flow rate, but will
generally be only of the order of a fraction of a second.
Unsteady-state heat transfer takes place for the dura-
tion of the particle residence time in the element and

the heat lost from the particles is transferred to the
fluidizing gas. The heat balance is used to calculate the
mean particle temperature and internal temperature
distribution after the particular element residence time,
0, these being used as the inlet conditions for the
following element. These heat balance calculations are
carried out successively from element to element and
the outlet particle temperature is the mean particle
temperature leaving the final element.

In these heat balance calculations each particle is
assumed to have the same treatment so the basic
analysis s in effect carried out for plug flow of particles
through the bed. This analysis is then appropriately
extended to allow for the possibility of a residence time
distribution of particles, as well as a distribution of
particle sizes.

In the analysis following, the calculation of surface
area available for heat transfer and the internal particle
conduction heat-transfer calculations were all based on
spherical particles. The analysis could be applied in a
similar way to other regular shapes by use of the
appropriate equations for those shapes.

The analysis presented refers to the cooling of hot
particles by a cold gas. A similar approach could be
applied to the analogous case of the heating of cold
particles by a hot gas.

3. BASIC ELEMENTAL HEAT BALANCE

Consider an element n which is a typical element
somewhere along the bed. The conditions in the element
are depicted in Fig. 1. The rate of heat transfer from

?gon

MWM
Mass of
particles
Wy
tc‘n-l fﬂ,, Zr
tg, +dtg,
dz
T@n
Up fgin

F1G. 1. Elemental heat balance.

the particles in the element Q,, may be given by the
following equation:

W, C
Qn"””g :

(ta,,, T [a..) (2)
n

where t,,_, is the mean temperature of particles leaving
element n—1, 1, is the mean temperature of particles
after contact time 8, in element »n and C; is the specific
heat of the particles. In the application of equation (2),
tq,_, will have been calculated from the heat balance in
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the preceding element, n— 1. Temperature ¢, will be an
unknown and will have to be calculated from a know-
ledge of the internal temperature distribution. This may
be carried out using:

3 R
by =3 j ta(r).r2dr 3
h R3 o
where 1,(r) is the temperature within the particles at
radius r after contact time §, in element n and R is the
outside radius of the particles. Since perfect mixing of
particles in the vertical plane is assumed, the particles
will have a constant surface temperature, £, , within the
element over contact time 8, Thus the relationship
between t,(r) and r may be obtained from the standard
unsteady-state heat-conduction heat-transfer relation-
ship for spheres, where the particles possess a specified
internal temperature distribution, r,-;(1) at zero
contact time. This relationship has been shown [13]
to be:

2 M=o Iy —oam*n?0,
t,‘(r) = Ly, B ;§ mgl Sin (T>€Xp (‘*‘*‘}i‘é""—)
R A
x J Altn- (D=1, ] sin (%)dx @)
1]

where A is the radius within the particle referring to
element n—1, and o is the thermal diffusivity of the
particles.

It is convenient to put this equation in the following
form:

ta(r) = A(r)+t,,[ 1 —B(r})] %)

where

2 mE=2 Imar —am?n20,
Al = = m;{ sin (—R—)exp (wRZ —)
'R
x j i (sin ™41 6)
o R

and

J m=w _ 2 29,,
B =23 sin("2" Jowp ()
R A
x J Asint=lda (7)
0 R
Inserting equation (5) into equation (3) and simplifying
gives:
g, = ??to,,'*'é (8}

where

3 R
1= |, =B o
and |

3 'R
E=— J A(ryr* dr. (10)
0

R3
Substituting for ¢,, in equation (2) using equation (8)
gives:

W, Cs
(ta,, -1 ’7{0,““ Z.f)

Qn= 0,

(1n

This is a relationship for the rate of heat transfer
from the particles in element n in terms of the mean
particle temperature entering from element n—1 and
the particle surface temperature in elément n.

This rate of heat loss by the particles will be equal
to the rate of heat transfer to the gas plus the rate of*
heat loss through the walls of the bed. Thus:

_ punLBC,
N

where u, is the gas velocity in element n, L is the
length and B the breadth of bed, N the number of
elements in the analysis and p the gas density.
Temperatures t,; and t,, are the inlet and outlet gas
temperatures for the element. U is the overall heat-
transfer coefficient for heat loss through the walls which
have area A, in clement n. Temperature t,, is
associated with a mean bed temperature and ¢,y is the
ambient air temperature. Normally the rate of heat loss
through the walls is negligible compared to the rate of
heat transfer between particles and gas, so that equation
(12) reduces to:

Qn (tgoﬂ"' Igi,,‘) + UAsn(tb,‘_ tamb) (12)

pu, LBC
Oy = (fgon“"fgin)' N .
Combining equations (11) and (13) gives the following
relationship for ¢,,,

13)

M;C,N
pu, LBC,

In this relationship the mass flow rate of particles
through the bed, M, has been substituted for W,/8, as
it is more convenient to use.

The particle-gas heat-transfer coefficient h, may be
introduced into the analysis by considering a differential
heat balance on the gas at some level in the element
as depicted in Fig. 1. This balance gives:

pu, LB dz

LCydt, = hA,(t, —t, ) —
oty = hAs(ta, —t5) 5=

(ta,-, =10, =% (14)

tgo, = tgi,

where A, is the particle surface area in the element
available for heat transfer. Since the particles are
perfectly mixed in the vertical plane ¢, will be constant
and the balance may be integrated directly using the
following limits:

Z=0
Z=Zr

lg, = lg, at
tg, = tgo, 4at
The integration gives:
n [ton“ tai..:} - hAN )
ty,~teo. | pusLBC,
Putting in terms of z,, gives:

—NhA
Lgon = Lo, (to,— tg) EXD [p“——u LBC" ] (15)
n P

Eliminating t,,, between equations (14) and (15) gives
the following relationship for the unknown ¢,
_ fgg(l — Q)+ K(fa,, o &)

B 14+7x-Q

(16

n
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where
—NhA,
Q= 7
xp l:pu,, LBC,,:| a7
and
M, C,N
* T Copn LB "

In the element to element numerical calculations all
the quantities on the R.H.S. of equation (16) are directly
calculable, hence ¢, can also be calculated.

Now that ¢, is a known quantity the mean particle
temperature in element n can be calculated using
equation (8) and the internal particle temperature
distribution using equation (4). The outlet gas tempera-
ture, if required, can be calculated from either of
equations (14) or (15).

4. USE OF ELEMENTAL HEAT BALANCES
IN ANALYSIS

In the application of the described heat balance
calculation to provide a general analysis for the system
as a whole, it is first necessary to specify the particle
inlet conditions to the bed. If there is a known internal
particle temperature distribution then the described
heat balance can be directly applied to element No. 1.
However, it will usually be necessary to assume that the
particles enter the bed with a constant internal tempera-
ture. In this case the heat balance calculations on
element No. 1 can be simplified, since the situation in
element No. 1 reduces to one of unsteady-state heat
conduction in a sphere over a period of time 8, with a
fixed surface temperature, t,, and constant initial
internal temperature t;. The relationship for the mean
temperature, t,,, after time 6, may thus be given by

(13):
6 “7!2401
lag, = tal+(txi'—tol)? €Xp T

+leX —47'[20601 i
1 p R?

(19)

which reduces to:

lag, = Lo, +(tsi—tolﬁ
by putting

6 —n?af, 1 —4n%af,
C-’=P exXp T +Zexp T + ... |

If equation (19) is substituted for ¢, instead of
equation (8) in the basic balance, then use of similar
procedures to those used in Section 3 gives rise to the
following equation from which ¢,, can be calculated:

 Ytat(1-Blg

to, = ————— 20
g 20)
where ‘ '
M,C,N
= (1- 21
V= e 10 @1
and

— Nh4,
= A 22
B =exp [pu,,LBCg] (22)

The mean outlet particle temperature from element
No. 1 may be determined using equation (19) and the
particle internal temperature distribution from equa-
tion (23):

) = bt —t )2R (T .
r) =ty +tsi—to,)—| sin| — Jexp| ——
! nr R P R?

1. [2nr —4rn%af, N @3
—=Smi{— X — . N
MR )P\ TR

These provide the inlet conditions to element No. 2
for which the basic heat balance is used to calculate a
mean particle temperature t,, and internal particle
temperature distribution ¢,(r). These numerical calcula-
tions are carried out successively from element to
element until the particles are assumed to leave the bed
after element No. N. The mean particle temperature

[Reod in_experimental data ]

Calculate t5, , tq, and t (r) using
equations {20),(19)and (23)
| I

n =n+l

[ catculate B(r) using equation (7] |

[Ca!culate Alr) using equation (6) |

lColculute 7 ond € using equations (9)and(lo)]

Calculate to , 1o, and t, (r)

using equations (I6),(8)and (5}

<l

The outlet particle temperature for the

residence time investigated is fﬂu

F1G. 2. Sequence for calculating outlet particle temperature.

leaving the bed is thus zax. The full sequence of calcula-
tions is shown in flow diagram form in Fig. 2. This
diagram demonstrates the method for determining the
mean outlet particle temperature for a situation where
particles of a particular size pass through the bed under
plug flow conditions.

5. ALLOWANCE FOR PARTICLE RESIDENCE
TIME DISTRIBUTION

The analysis described assumes that all particles pass
through the bed with the same residence time. In
practice this may be approached with a long bed, but
in order to generalize the theory it is necessary to allow
for the possibility of their being a residence time
distribution of particles passing through the bed. This
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may be done by using an approach similar to that
used in chemical reactor theory [14]. Using this
approach, the mean temperature of the particles leaving
the bed, t,,m, may be expressed in the following way:

Lsom = J‘ tsoOE(G)de

0

(24)

where 15,4 is the mean outlet particle temperature from
the bed corresponding to a reduced bed residence time
of 0, and E()df is the fraction consisting of bed
residence time between 6 and 0+ d6. This relationship
may be used in two different ways depending on the
form of the residence time distribution data. If the
relationships between t,, and 0 and E(6) and 6 are
available in equation form, then the integration may
be carried out directly. If either or both of the relation-
ships are in numerical form then the integration would
have to be carried out numerically as a summation. It
should be noted that when there is a residence time
distribution of particles, the term M; should be replaced
by M,/ in the analysis.

6. ALLOWANCE FOR BOTH PARTICLE RESIDENCE TIME
DISTRIBUTION AND PARTICLE SIZE DISTRIBUTION
A particle size distribution may be allowed for in a

similar mannerto that of the residence time distribution.

Thus, if the fraction of particles of a given size is

G(p)dp, the mean outlet particle temperature for all

sizes may be obtained from:

0 ol
tsom = _L J\O tsoOpE(e)G(p)dgdp (25)
where ty,4, represents the outlet particle temperature
for a particular size of particle p, having a reduced bed
residence time 6. The particle size distribution will,
however, usually be in numerical form so that the

integrations would probably be carried out numerically
as summations.

7. SPECIAL CASES

The analysis described is a generalized analysis suit-
able for all situations. There are, however, two
industrially important situations for which specific
additional assumptions may be made. These additional
assumptions simplify the analysis considerably, such
that the differential heat balance may be integrated
directly over the bed. This results in the overall process
of heat transfer being described by a single equation
in each case, the use of which is much easier than the
general analysis. In each case the inlet gas velocity and
temperature is assumed to be constant under the bed.

The first important special case is that where the
particles are made from a sufficiently high thermal
conductivity material that internal temperature
gradients may be neglected, but, the particles are of
sufficient size that thermal equilibrium between
particles and gas is not achieved in the bed. The
second important case is that where the particles are
of such small size that internal resistance to heat
transfer may be neglected and thermal equilibrium
between particles and gas is achieved in the bed.
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Special case 1: no internal temperature gradients but no
thermal equilibrium

This is a special case where the internal resistance to
heat transfer within the particles may be neglected but
thermal equilibrinm between particles and gas at the
top of the bed has not been achieved. Typically, the
situation may be one where large particles made of a
high thermal conductivity material are processed in a
shallow bed.

Reference to equation (4) shows that when the term
(am*n%6,/R?) is high, then t,{r)—1,, and internal
temperature gradients can be neglected. This may
happen when the thermal diffusivity of the particles is
high, or when the particle radius is low. For this special
case, the heat transfer analysis can be simplified con-
siderably.

Consider element No. n as shown in Fig. 1 as a
differential section in the bed. If, as in Section 3, we
designate W,/0, to be the mass flow rate of particles
through the bed, M;, and also the temperature difference
(ta,_,—ta,) to be dt,, then the particle rate of heat loss
equation (2) simplifies to give:

Q.= M, C,ds,. (26)

If the length of each element is designated d!, then
the number of elements N = L/dl. Since the total gas
flow rate in the system M, = puLB then equation (13)
for the rate of heat loss by the gas simplifies to:

_ M, C,

On=——(tgo—tg)dl

I @n

Combining equations (26) and (27) now gives rise to
the following heat balance over the element or
differential section:

MG,

Als Csdts =
L

(tao—ta)dl. (28)

Equation (28) can only be integrated when the
relationship between ¢4, and ¢, is known. The required
relationship may be found by introducing the gas—
particle heat-transfer coefficient h, into the analysis
using a differential heat balance on the gas at some
level in the element, as before. Thus, reference to Fig. 1
shows that:

dz

puCydt, = hA(ts—t,)Z

where A is the particle surface area per unit base area
and ¢ is the particle temperature which is constant
within the element, there being no internal temperature

gradients.
Integrating this over the full depth of bed Z7 gives:

te—Lgi
In (—i) _| .
ts—1go uC,
Rearrangement gives:

—hA
tgo—tgi = (ts—1tg) [1 —exp (puC >]
g

(29)
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Substituting equation (29) in (27) and combining with
equation (26) gives:

M, —hA
M, Codts = 2. Cylts—t)| 1 — .
2-cimta e (2 o
This can now be integrated directly over the full
length of bed using limits
=1L

1=0

ts =15
Is = lso

to give the following relatioﬁship for the outlet particle
temperature for this special case:

-M,C
tso = tgi+{ta—1tg) {CXP_M“LCE

[l o

Equation (30)is the same as that obtained by Gelperin
and Ainshtein [7] in their analysis. This equation
assumes plug flow of particles through the bed, thus if
there is a residence time distribution of particles

© ~M,C,0
tsom = Ugi+(tsi—t4)) J [exP {-——“’—“—
0

M, C

X [1 —exp (;:?)]}]E(H)d@ 31

where 0 is a dimensionless residence time, defined as
residence time divided by mean residence time. If there
is a particle size distribution as well as a residence
time distribution

bl -M,C,0
Lsom = tgi+([si_tgi) jo JO [exp {“Tl;yc—:"

x [1 —exp %)}}]E(B)G(p)dﬁdp. (32)
g

Special case 2: thermal equilibrium in bed

For the special case where the product of the heat-
transfer coefficient and the surface area per unit base
area, hA, is high, then the term exp(—hA/puC,) in
equation (30) tends to zero. In such a case, the general
equation for particle plug flow conditions reduces to:

-M,C,
tso = Igi+(ts,"—tyi) ¢Xp (ﬁ)

This corresponds to the case when thermal equilibrium
between the gas leaving the bed and particles at the top
of the bed, is achieved. This equation was also obtained
by Kazakova [3] who derived it by simply putting
ts = t4 in equation (28) and integrating.

For the case where the particle flow through the bed
does not approximate a plug flow condition, the
residence time distribution may be allowed for in the
manner described in Section 5. Thus the mean outlet
particle temperature under thermal equilibrium condi-
tions, tees, may be obtained from:

e -M,C,0
Lsoev = tgi+([si_tqi) J; [GXP”—A/L%

(33)

}E(O)d@. (34)

The application of this equation has been verified
experimentally [11].

A particle size distribution will not affect heat transfer
in this type of situation.

8. DISCUSSION

The general analysis described may be used either (1)
as the basis of a design method to determine the size of
shallow crossflow fluidized bed necessary to carry out a
given heat load, or (ii) to determine the performance
of a particular bed operating under given conditions.

If there is a known residence time distribution of
particles through the bed, equation (24) must be used
in conjunction with the sequence shown in Fig. 2. If
there is both a particle size distribution as well as a
residence time distribution within the bed then equation
(25) must be used in conjunction with the sequence
shown in Fig. 2.

In the design case, the particle inlet and outlet
temperatures and inlet gas temperature must be
specified, together with the particle flow rate, bed
operating conditions, gas—particle heat-transfer coeffi-
cient and superficial gas velocity. The analysis would
then be used to calculate the base area of bed and
total gas flow rate necessary to carry out the given
load. The method could also be used as a basis for
optimizing the size and operating conditions for
minimum total cost.

In the determination of the performance of a
particular bed operating under given conditions, the gas
and particle flow rates must be specified together with
the particle and gas inlet temperatures, gas—particle
heat-transfer coefficient, and bed conditions. The
generalized theory would then be used, possibly in
conjunction with either equation (24) or (25), as approp-
riate, to determine the mean outlet particle tempera-
ture from the bed. The method could also be used to
optimize the main operating variables, bed depth and
gas flow rate, for minimum operating cost.

The two special cases of no particle internal resistance
to heat transfer and thermal equilibrium in the bed were
shown to be simplified forms of the general analysis.
The relationships derived for the particle plug flow
condition were the same as those derived by other
investigators in different ways [7, 3]. Since standard
simple integration techniques were possible in their
derivation to produce a single equation in each case,
their use in design or performance evaluation is much
easier. These solutions may be used, provided that the
conditions are known to be such that the appropriate
simplifying assumptions are valid. It has been suggested
[15] that the Biot number may be used to determine
when internal particle thermal resistance effects become
important. The critical figure quoted was 0.25. Thus if
it is known that Bi < 0.25 internal thermal resistance
effects may be ingnored and one of equations (30)~32)
may be used for design or performance evaluation as
appropriate to the situation. If, however, Bi > 0.25 then
internal thermal resistance effects cannot be ignored
and the general analysis must be used. The second
special case assuming thermal equilibrium between
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particles and gas in the bed is that where the particles
are very small. This applies when exp(—hA/puC,) -0
in equations (30)—~(32), and in this the simplest possible
situation, one of equations (33) and (34) may be used
in design or performance evaluation as appropriate. If
the inlet air velocity or temperature was uneven over
the length of bed it would be necessary to use the
general analysis for all situations.

9. CONCLUSIONS

A generalized analysis to describe the process of gas
particle heat transfer in shallow crossflow fluidized bed
heat exchangers has been developed. Thus the pro-
cedures described in Section 4 in conjunction with the
proposed methods for incorporating a particle residence
time distribution and/or a particle size distribution as
described in Sections 5 and 6 may be used as the basis
for design or evaluating the performance of existing
equipment. When Bi < 0.25 particle internal resistance
to heat transfer may be neglected and the analysis
simplified. A further simplification to the analysis is
possible under thermal equilibrium conditions between
particles and gas when exp{—hd4/puC,) - 0.
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TRANSFERT THERMIQUE DANS LES ECHANGEURS DE CHALEUR
A LIT FLUIDISE PEU PROFOND—I1. THEORIE GENERALE

Résumé— Une méthode généralisée d’analyse a &té développée afin de décrire les processus globaux du

transfert thermique entre gaz et particules dans les échangeurs de chaleur & lit fluidisé peu profond.

L’analyse, qui tient compte de la résistance interne des particules au transfert thermique ainsi que de la

distribution des temps de séjour et de celle de la taille des particules, peut étre utilisée aussi bien pour la

conception de nouveaux échangeurs que pour évaluer les performances des échangeurs existants. Des

analyses plus simples, applicables a certains cas particuliers importants, ont été obtenues & partir de
Panalyse générale par I'introduction d’hypothéses simplificatrices appropriées.

DER WARMEUBERGANG IN KREUZSTROM-FLIESSBETT-WARMEUBERTRAGERN MIT
GERINGER SCHICHTHOHE—I. EINE VERALLGEMEINERTE THEORIE

Zusammenfassung—Es wird eine verallgemeinerte Theorie zur Beschreibung des Mechanismus des

Wirmeiibergangs zwischen Gas und Schichtpartikeln in FlieBbett-Wiarmelibertragern mit geringer

Schichthéhe entwickelt. Die Methode, die sowohl den Wirmeleitwiderstand innerhalb der Partikel, wie

auch das Verweilzeit- und Gri8Benspektrum der Partikel beriicksichtigt, kann zum Entwurf neuer

Wirmeiibertrager oder zur Berechnung der Leistung bestehender Warmeiibertrager verwendet werden.

Aus der veraligemeinerten Theorie werden durch Anwendung geeigneter vercinfachender Annahmen
einfachere Berechnungsmethoden fiir gewisse bedeutende Spezialfille abgeleitet.

NCCIEOOBAHHWE TEITJIOOBMEHA B TENJIOOBMEHHUKAX
C TOHKWMM TIEPEKPECTHBIMH KHUITAIIUMU CIOAMU

Annotauust — PaspaGorana obuwan MeToanka ommcaHus npouecca TEmIoobMena MeXIy YacTHueH
H ra30M B TENIOOOMEHHUKAX C TOHKHMH NEPEKPECTHLIMM KUIOAWKMY cnoamu. I NpoekTHpORaHHs
HOBBIX TEIUIOOOMEHHMKOB MM OLEHKH PabOThi CYMIECTBYIOUMX TEILIOOOMEHHHKOB MOXET OHITH
HCNOAB30BAH METOH, KOTOPLIM YYMTRIBACT BHYTPEHHEE CONPOTHBJIGHME HACTHII NEPEHOCY Ternnia,
a TAKKe pachpenenieHte BpeMenHK npebulBanKs ¥ pa3Mepa YacTHIL
Ha ocHOBe 3TOT0 METONA NYTEM HCIONB30BAHNA COOTBETCTBYIOUINX YIPOINAIOLTAX NONYINEHRH
nonyyeHst Sonee MPOCTHIC BADHAHTH! ANIA HEKOTOPHIX BAXHBIX MACTHBIX CIIy4aeB.



